

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR(AUTONOMOUS) Siddharth Nagar, Narayanavanam Road–517583



#### **OUESTIONBANK (DESCRIPTIVE)**

Subject with Code: APPLIED CHEMISTRY (20HS0804)Course &Branch: B.Tech: ECE, CSE & EEEYear & Sem : I YEAR&I SEMRegulation: R20

### UNIT-I ELECTROCHEMISTRY AND APPLICATIONS

| 1  | a) Define Electrochemical cell? Explain the construction, working                          |            |       |
|----|--------------------------------------------------------------------------------------------|------------|-------|
|    | Principle and mechanism of an Electrochemical cell.                                        | [L1] [CO1] | [8M]  |
|    | b) What is single electrode potential? Calculate the single electrode                      |            |       |
|    | potential of zinc in 0.05M ZnSO <sub>4</sub> solution at 298.15 K. $\{E^{0}Z_{n/Zn}^{2+}=$ | [L3] [CO1] | [4M]  |
|    | -0.763V}                                                                                   |            |       |
| 2  | a) Define Electrode Potential.                                                             | [L1] [CO1] | [2M]  |
|    | b) Derive the Nernst equation for a single electrode potential and explain                 |            |       |
|    | the terms in equation and write its applications.                                          | [L2] [CO1] | [10M] |
|    |                                                                                            |            |       |
| 3  | a) Define Photovoltaic cell.                                                               | [L1] [CO1] | [2M]  |
|    | b) Explain construction, working and applications of photovoltaic cell                     | [L2] [CO1] | [10M] |
|    | With neat diagram.                                                                         |            |       |
| 4  | Discuss the titration curves obtained in the following Acid – Base                         |            |       |
|    | conductometric titrations                                                                  |            |       |
|    | a) Strong acid with Weak base                                                              | [L3] [CO1] | [6M]  |
|    | b) Weak acid with Strong base                                                              | [L3] [CO1] | [6M]  |
| 5  | a) What is primary Battery? Write a brief note on Zinc-Air battery                         | [L1] [CO1] | [6M]  |
|    | b) Write a short note on Ni-cd (NICAD) battery.                                            | [L2] [CO1] | [6M]  |
| 6  | a) Define electrochemical sensor.                                                          | [L1] [CO1] | [2M]  |
|    | b) Explain Electrochemical sensor construction, Working principle and                      | [L2] [CO1] | [10M] |
|    | applications.                                                                              |            |       |
| 7  | Discuss the titration curves obtained in the following Acid – Base                         |            |       |
|    | conductometric titrations                                                                  |            |       |
|    | a) Weak acid with Weak base                                                                | [L3] [CO1] | [6M]  |
|    | b) Strong acid with Strong base                                                            | [L3] [CO1] | [6M]  |
| 8  | a) What is secondary Battery? Explain the Construction and working of                      | [L1] [CO1] | [6M]  |
|    | Lead acid battery.                                                                         |            |       |
|    | b) Write a note on Lithium-Ion rechargeable cell.                                          | [L2] [CO1] | [6M]  |
| 9  | a) Define Fuel cell? Describe the Construction and Working principle                       |            |       |
|    | and uses of Methanol – Oxygen Fuel cell.                                                   | [L1] [CO1] | [6M]  |
|    | b) Write short note on Hydrogen-Oxygen fuel cell.                                          | [L2] [CO1] | [6M]  |
| 10 | a) Write a short note on Photo Galvanic cell                                               | [L2][CO1]  | [6M]  |
|    | b) Explain about Potentiometric redox titrations                                           | [L2] [CO1] | [6M]  |

| UNIT -II                            |
|-------------------------------------|
| <b>STRUCTURE AND BONDING MODELS</b> |

| 1  | a) Explain Planck's Quantum Theory.                                                                                                                                                                                 | [L2] [CO2] | [6 M]        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
|    | b) Write short notes on Wave-Particle duality of matter                                                                                                                                                             | [L2] [CO2] | [6 M]        |
| 2  | a) Write the postulates of molecular orbital theory.                                                                                                                                                                | [L2] [CO2] | [6M]         |
|    | b) Explain the crystal field splitting in Tetrahedral complexes.                                                                                                                                                    | [L3] [CO2] | [6M]         |
| 3  | a) Derive Schrodinger wave equation?                                                                                                                                                                                | [L3] [CO2] | [10M]        |
|    | b) Explain the significance of the $\Psi$ and $\Psi^2$                                                                                                                                                              | [L2] [CO2] | [2M]         |
| 4  | a) Explain de Broglie's dual nature hypothesis                                                                                                                                                                      | [L2] [CO2] | [6M]         |
|    | b) What is Heisenberg's uncertainty principle?                                                                                                                                                                      | [L1] [CO2] | [6 M]        |
| 5  | a) Sketch the Molecular Orbital Energy Diagram for Oxygen (O <sub>2</sub> ). Explain its Bond order and magnetic property based on MOT theory.                                                                      | [L3] [CO2] | [6M]         |
|    | b) Explain $\pi$ - molecular orbital of 1,3- Butadiene with a neat sketch.                                                                                                                                          | [L3] [CO2] | [6M]         |
| 6  | a) Discuss the Molecular Orbital Energy Diagram for $F_2$ molecule and calculate its bond order and explain its magnetic property.                                                                                  | [L2] [CO2] | [8M]         |
|    | b) Explain the Molecular Orbital Energy Diagram for CO molecule and calculate its bond order and explain its magnetic property.                                                                                     | [L2] [CO2] | [4M]         |
| 7  | a) Explain $\pi$ - molecular orbital of Benzene with a neat sketch.                                                                                                                                                 | [L2] [CO2] | [8M]<br>[4M] |
|    | b) Differentiate bonding and anti-bonding molecular orbitals.                                                                                                                                                       |            |              |
| 8  | a) Explain the salient features of Crystal Field Theory.                                                                                                                                                            | [L2] [CO2] | [6M]         |
|    | into two groups in an octahedral ligand field.                                                                                                                                                                      | [L3] [CO2] | [6M]         |
| 9  | a) Sketch the Molecular Orbital Energy Diagram for Nitrogen $(N_2)$ . Explain                                                                                                                                       | [L3] [CO2] | [6M]         |
|    | <ul><li>its Bond order and magnetic property based on MOT theory.</li><li>b) Explain the Molecular Orbital Energy Diagram for NO molecule and Calculate its bond order and explain its magnetic property.</li></ul> | [L2] [CO2] | [6M]         |
| 10 | a) Explain colour properties of transition metal complexes                                                                                                                                                          | [L2] [CO2] | [6M]         |
| 10 | b) Discuss about magnetic properties of metal complexes.                                                                                                                                                            | [L2] [CO2] | [6M]         |

## UNIT III POLYMER CHEMISTRY

| 1  | a) What is functionality of monomer?                                      | [L1] [CO3] | [5M] |
|----|---------------------------------------------------------------------------|------------|------|
|    | b) Write a note on nomenclature of polymers.                              | [L1] [CO3] | [7M] |
| 2  | a) Define polymerization? Write the types of polymerizations with         | [L2] [CO3] | [8M] |
|    | examples.                                                                 |            |      |
|    | b) Write the mechanism of Cationic addition polymerization.               | [L2] [CO3] | [4M] |
| 3  | Explain the following mechanism.                                          |            |      |
|    | a) Free radical addition polymerization.                                  | [L2] [CO3] | [6M] |
|    | b) Anionic addition polymerization.                                       | [L2] [CO3] | [6M] |
|    |                                                                           |            |      |
| 4  | a) Distinguish between Chain growth and step growth polymerization with   | [L3] [CO3] | [5M] |
|    | examples.                                                                 |            |      |
|    | b) Write about Co-ordination or Ziegler-Natta polymerization.             | [L2] [CO3] | [7M] |
| 5  | Define the following terms                                                |            |      |
|    | (a) Polymer (b) Monomer (c) Degree of polymerization (d)                  | [L2] [CO3] | [4M] |
|    | Polymerization                                                            |            |      |
|    | (e) Write a short notes on Co – Polymerization with examples.             | [L2] [CO3] | [8M] |
|    |                                                                           |            |      |
| 6  | a) Write the synthesis and engineering applications of Poly aniline       |            |      |
|    | conducing polymer.                                                        | [L2] [CO3] | [6M] |
|    | b) Write the mechanism of Anionic addition polymerization.                | [L2] [CO3] | [6M] |
| 7  | a) Distinguish between Thermoplastics and Thermosetting plastics.         | [L4] [CO3] | [6M] |
|    | b) Describe the preparation, properties and uses of Bakelite.             | [L3] [CO3] | [6M] |
| 8  | Describe the preparation, properties and uses of the following            |            |      |
|    | a) Nylon-6, 6.                                                            | [L2] [CO3] | [6M] |
|    | b) Carbon Fibers                                                          | [L2] [CO3] | [6M] |
| 9  | a) What are conducting polymers? How are they classified?                 | [L1] [CO3] | [4M] |
|    | b)Write the synthesis and engineering applications of Poly acetylene      | [L2] [CO3] | [8M] |
|    | Conducting polymer.                                                       |            |      |
| 10 | a) Write the preparation, properties and application of Buna-S rubber and | [L2] [CO3] | [8M] |
|    | Buna-N rubber.                                                            |            |      |
|    | b) Write the applications of conducting polymers.                         | [L2] [CO3] | [4M] |

## UNIT-IV INSTRUMENTAL METHODS AND APPLICATIONS

| 1  | a) Explain the different regions of electromagnetic spectrum.               | [L2] [CO4] | [6M]  |
|----|-----------------------------------------------------------------------------|------------|-------|
|    | b) Write a short note on Beer-Lambert's Law.                                | [L2] [CO4] | [6M]  |
| 2  | a) Explain principle & instrumentation of UV-visible spectroscopy with neat | [L2] [CO4] | [9M]  |
|    | diagram.                                                                    |            |       |
|    | b) Write about Applications of UV-Visible spectroscopy.                     | [L2] [CO4] | [3M]  |
| 3  | Explain the working principle and instrumentation of Atomic Absorption      | [L2] [CO4] | [12M] |
|    | Spectrometer (AAS)                                                          |            |       |
| 4  | a) Give an account on principle and instrumentation of IR spectroscopy.     | [L2] [CO4] | [8M]  |
|    | b) Write the applications of IR spectroscopy.                               | [L2] [CO4] | [4M]  |
| 5  | a) Explain the principle, working and applications of Thin Layer            | [L2] [CO4] | [8M]  |
|    | Chromatography (TLC).                                                       |            |       |
|    | b) Write the applications of TLC.                                           | [L2] [CO4] | [4M]  |
| 6  | a) What is meant by Chromatography? Write about main parts of HPLC.         |            |       |
|    | With neat diagram.                                                          | [L2] [CO4] | [8M]  |
|    | b) Write about the important applications of HPLC Chromatography.           | [L2] [CO4] | [4M]  |
| 7  | a) Explain the principle and instrumentation of Gas Chromatography          | [L2] [CO4] | [8M]  |
|    | b) Write any four applications of Gas Chromatography.                       | [L2] [CO4] | [4M]  |
| 8  | a) Explain the main components of gas chromatography                        | [L2] [CO4] | [6M]  |
| Ŭ  | <ul> <li>b) Explain stretching and hending vibrations</li> </ul>            | [L2] [CO4] | [6M]  |
| 0  | c) Explain stretching and bending violations.                               |            |       |
| 9  | a) Explain the separating methods of Gaseous Mixtures?                      | [L2] [C04] |       |
|    | b) Explain the distillation and fractional distillation.                    | [L2] [C04] |       |
| 10 | a) Describe the various methods for separating the Liquid Mixtures?         | [L2] [CO4] | [6M]  |
|    | b) Describe the methods of separation Gaseous mixture                       | [L2] [CO4] | [6M]  |
|    | o, Deserve die methous of separation Subcous mixture.                       |            | L 1   |

# UNIT-V MODERN ENGINEERING MATERIALS

| 1  | a) Define semiconductor?                                                       | [L1] [CO5] | [2M]  |
|----|--------------------------------------------------------------------------------|------------|-------|
|    | b) Explain in detail about principle and application of semiconductors?        | [L2] [CO5] | [6M]  |
|    | c) How the semiconductor can classify and give examples.                       | [L2] [CO5] | [4M]  |
|    |                                                                                |            |       |
| 2  | a) Define Super conductors.                                                    | [L1] [CO5] | [2M]  |
|    | b) Discuss about the principle and application of Super conductors and         |            |       |
|    | their applications?                                                            | [L1] [CO5] | [10M] |
| 3  | a) Draw the band diagrams for conductors, semi-conductors and Insulators.      | [L2] [CO5] | [6M]  |
|    | b) Define Dielectric materials. Write the good characteristics of dielectrics. | [L1] [CO5] | [6M]  |
| 4  | a) Write the classification of electrical insulators.                          | [L2] [CO5] | [5M]  |
|    | b) Write the characteristics and applications of electrical insulators.        | [L2] [CO5] | [7M]  |
|    |                                                                                |            |       |
| 5  | a) Write the Properties of Nano materials.                                     | [L2] [CO5] | [6M]  |
|    | b) What are the different types of CNTs?                                       | [L1] [CO5] | [6M]  |
| 6  | a) What is basic lock and key principle?                                       | [L1] [CO5] | [6M]  |
|    | b) Write a short note on Complementarity.                                      | [L2] [CO5] | [6M]  |
| 7  | Explain the applications of supramolecules in                                  |            |       |
|    | a) Sensors, Gas storage.                                                       | [L2] [CO5] | [7M]  |
|    | b) Molecular switches.                                                         | [L2] [CO5] | [5M]  |
| 8  | a) What is meant by Nano materials? How the Nano materials Classified.         | [L1] [CO5] | [4M]  |
|    | b) How do you apply in Catalysis and medical fields in the application of      |            |       |
|    | supra molecules?                                                               | [L2] [CO5] | [8M]  |
| 9  | a) Write a short notes on Carbon Nano Tubes.                                   | [L1] [CO5] | [6M]  |
|    | b) Write a note on Fullerenes.                                                 | [L1] [CO5] | [6M]  |
| 10 | a) Draw the band digrams for conductors, semi –conductors and insulators.      | [L3] [CO5] | [6M]  |
|    | b) Write short notes on Internsic and Externsic Semiconductors.                | [L2] [CO5] | [6M]  |

#### PREPARED BY: CHEMISTRY DEPARTMENT